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AB STRACT

Two model field theories involving scalar and fermion
fields with contact interactions are analyzed. The models
are solved in the large-N limit. It is shown that chiral
symmetry of the Lagrangian is realized in the spectrum. The
anomal ous magnetic manent of the composite fermions is shown
to be mF/mé, where Mg and mg are the masses of the fermionic
and bosonic preons, respectively. Finally a semi-realistic

model which incorporates the Kknown gauge interactions is

constructed.
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I. INT RODUCT ION

It is widely accepted that the main problem in
constructing composite models for quarks and leptons
consists in obtaining composite fermions whose mass is much
smaller than the scale of binding. In the dynmamical
mechanisms proposed so far such fermions arise as massless
"baryons" in a Yang-Mills theory with unbroken or partially
broken chiral symmetry [1l], as Goldstone fermions of
dynamically broken supersymmetry [2], or as supersymmetric
partners of Goldstone bosons of a spontaneously broken
global symmetry [3]. Although all these apprcaches have
contributed to the dewvelomnent of new ideas, they have not
produced a simple calculable model in which one could
compute things like masses of the bound states, their
anomal ous magnetic maments etc,

In this paper we examine two model field theories
inwlving scal ar and fermion fields wi th contact
interactions. These interactions are non-renormalizable,
therefore we have to keep the cutoff as a physical
parameter. We consider N-component scalar and fermion
fields in the 1limit of large N and solwve the theory to the
leading order in 1IN,

We find that in this limit the chiral symmetry of the
Lagrangian 1is generally realized in the gspectrun. The mass
of the fermion-scalar bound state is proportional to the

explicit chiral symmetry breaking terms as, for example, the
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mass term for the fermionic field. 1In particular, the mass
of the bound state fermion does not depend on the mass of
the scalar field.

We compute the electromagnetic couplings of the
composite fermions with the particular interest focused on
their anomalous magnetic manents. They turn out to be of
order mF/mg, where m and my are the masses of the fermionic
and bosonic constituents, respectively, thus coconfirming
suggestions made earlier by several authors.

Finally, we show how to incorporate the gauge

interactions in our model and construct a semi-realistic

model for quarks and leptons.

IT. THE FIRST MODEL

In this Section we discuss our simplest model described

by the Lagrangian

X, = FaF-m)p+ e op)p- Foy ¢ (24

where 0= (by, Pprener y) and V2, Vorene, by are
N-component scalar and fermion fields respectively. Note
that the <chiral symmetry is explicitly broken by the
interaction and by the fermion mass term (if m¥0). The
latter 1is included for the sake of generality and the zero
fermion mass limit of the theory is straightforward. The

Lagrangian (2.1) 1is the simplest one describing interacting
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scalar and fermion fields. Since this theory 1is not
renormalizable (g has dimension (mass)ul) we shall introduce
an ul travioclet cutcff A for the mamentum integrations. Then
our model 1is an analog of the Nambu-Jona-Lasinio model [4]
with fermionic bound states.

We now proceed to solwve the theory in the leading order
in 1M in the large N limit. The dominant graphs in this
limit will be those containing the maximal number of
scal ar- fermion loops, Fig. 1. In order to sum up these
diagrams, we transform the Lagrangian (2.1) to an equivalent
Lagrangian of the gaussian form with respect to ¢ and ¢ by

adding the following term to it:

5 (@ g T (- Faete)- (=2)

The contribution of this term reduces to djust a numerical
constant in the path integral formalism. The resul ting

equivalent Lagrangian is given by

2 =Thgombe ¢ o-p)- e (@0 44 Fora)
(2.2)
If we eliminate g and q from this Lagrangian by using their
equations of motion, we will recover the original
Lagrangian, Ej. (2.1). As 1s seen fram Eg. (2.2), q
represents a composite operator Y5¢+'1|J, so that it describes

a compesite fermion if its propagator has a pole.
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In order to find the mass of the bound state, we
integrate out ¥ and ¢ fields in favor of ¢ and q and define

the effective action for g and g by
expiiSege(9)} EJ [d4, dffdy.d]exp{t fo L Y. (2.4)

After the integrations over ¢ and ¢ are performed, we find

N - , 1 = 1
Seﬁ :—.-—-gj&xqq-\-t NTrdn (1-— E;p‘;_‘{xsia,mvs CO

= SD + Si,n‘t: (25)
where 50 denotes the bilinear term for g and Sint the rest:
N - i
Se=—g Jdxgq-<N Tr(-——--mpzqa;;—“*?_m)gq), (2.6)
and
; 2 i’ ......-}-:--— _.—.-1'-—-— "
S-Ln‘t"_thgz WTY.(D*}*zq}; ia,m’rs q) : (2.7)

If we wish to include gauge fields, we have to replace [ and
A with the appropriate covariant derivatives in Egs. (2.6)
and (2.7 .

It is now easy to obtain the propagator of the field g

def ined by

S = [dxdy g1 G e )q6), (2.8)

namel v,
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Ay o N A4k 1 4
Py T NJ (2n)+ p2- (p-k)* 3;/‘-’“ %

= ¢ AP)- B(p*), (2:2)
where

AP ‘-'(4:[)1.%_—'(“—{\;‘:"24 (240)
and

B(p1)=7;’~+ (-E-%z%—-g- (2.1)

for m<<u<<A.
In order to obtain the correct normalization, we
introduce the renormalized composite quark field and the

renormal ized coupl ing by

-|Iz_

1
N
i}

(2.12)

and

%=Z'g. (2.13)

Then the renormalized composite quark propagator is giwven by

LG, =ZiG =f-M,

where
_ B(pY) 1
M= A 2w+ 3

As long as m<<p<<A, the mass of the composite quark is vwvery
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nearly independent of the mass of the scalar preon and can
be made arbi trarily small by having a light fermionic preon
and the large cutoff A (since gRtrlnAz/uz) . At first glance
this seems surprising--we obtain a light oomposite fermion
by binding a light fermion and an arbi trarily heavy scalar.
However this result can be understood in terms of the chiral
synmmetry of the Lagrangian (2.1). Eg. (2.15) giwves the
composite fermion mass as the sum of the
chiral-symmetry-kbreaking terms. It 1is important that the
chiral symmetry is realized in the Wigner mode.
IIT. ELECT ROMAGETIC INTERACT IONS
AND THE ANOMALOUS MAMNETIC MOMENT
Phenomenologically the electromagnetic interactions
and, in particular, the anomal ous magnetic mamnents are very
important tests of compositeness of quarks and leptons [5].
We 1inwvestigate here the electramagnetic properties of the
composite fermions described in previous Section.

+

Let ep and eg be the charges of the ¥y and ¢

respectively. The electromagnetic interactions are then

fields,

included by replacing the derivatiwves by the covariant

derivatiws,

?—"‘?"1"9;‘9(5,2;

0 —> @u+ieANz 1

in the quadratic term of the action, By. (2.6), vielding
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(2 . N
S )E:I‘AF):—LNTY‘(DZ* 1q751'ﬁ m'YQ)-——-a’—Sqqoﬁi (3.\)

We expand the propagators

1 i 1 2 ~2Y_A
= + pD-a%) - 4
Drp® D4 O+ PC"( D+pd

and

L 1 1 e _1-\-,..,
iB-m Cigem T3 fm(mﬁ ‘La) ig-m

and keep only the linear terms in Au,

SN A= S¥q)+ A q), (3.2)

where

A 5%q)= N é:ckf* z )4‘1 (oK (k) (PYALIK)
(3.3)

The vertex function F”, di agrammatically represented in
Fig. 2, is

. d*p’ (Zpak) 1
ZPP(F’k):teSS(QTC)E (P’*"S?"}*z p*-p'2 5 %

vie 1dfp 1 oy, (2.4)
- j(ﬁm o ALy =l

In order to obtain the local effective Lagrangian, we expand

I‘u(p,k) in powers of ku,
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(e )= T )k TP p) +- - - (3.5)

u
o

propagators,

and rH*v are readily computed by expanding the

1 L 1 ' 1
— ry 2 ,l( e s > -
[Py e pepr P T e
and
S SR (S
}9‘*)( - /F{,m y"- m ’P”__m
For zI'H

0 we obtain

M - dtp! 2p'# ___1;.-——-
2L =i ) o iy Brr

- A%p’ L A m
te S(ﬁ(v_?r)z,“@ys%’_m? /\d m);'
_i\f"_ , 3.€)
2@ )21“ pe

and for the renormalized vertex function

=(egre) Y —=

As expected, the bound state couples to the photon as a

fermion, with the strength determined by the total charge.
Our main goal in this Section 1is to calculate the

anomal ous magnetic mcoment of the howmd state, which is

obtained as the antisymmetric part of 7 THV fp):
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21 €
Z (Mo pve)= (,;E)zm oY —-&'—i—/{n;fnﬁ;. (328)

The effective Lagrangian is

2 =N ks

et =N W g e T (3:9)
M‘.’.

where qREZ_l/Zq, wi th qa;/N-yscb-l'-d), is the renormalized
composite fermion field. The anomalous magnetic manent is
proportional to the mass of the fermionic constituent and
inversely proportional to the scal ar mass squared. Although this
was suggested by several people [6], we find it reassuring
that in our model that can actually be confirmed by explicit
cal cul ation.

One might attempt to construct a realistic composite
model for cquarks and leptons based on the model proposed
here, However there appears to be no simple way of
incorporating the gauge theory of weak interactions. The
pr obl em is that the interaction term in the
Lagrangian (2.1), not being chirally invariant, breaks SU({2)

gauge symmetry.
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IVv. THE SECOND MODEL

The difficulties in incorporating the weak interactions
in the model described in the preceding sections are rel ated
to the fact that the interaction is not chirally invariant.
For that reason we study here a similar model, but with a
contact interaction which is chirally invariant. The

Lagrangi an of the model is

2, = FlF-m) P+ prea-p2)d— (F.4) 3{y-4), @)

where the notation is the same as in previous section,
except that the coupling constant g now has dimension
(mass)_z. Chiral symmetry is now broken only by the possible
fermion mass term, and if it is not spontaneously hroken we
might expect the mass of the composite fermion to be
propor tional to m,

In order to solwve the theory (4.1) in the large N limit
we add the following term to 3.2

N (g 2 BN (g edn-4") @.2)

leading to the following equivalent Lagrangian:

=T hd-m)p+ ¢ (-a-pp gy pod'-Fdna)+ § A g
“.3)

This Lagrangian, except for the mass term for 1y, is

invariant under chiral rotation,
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b — %0y
q— €%%, (4.4)
$— 9.

The calcul ations are done analogously to those 1in  the
previous section and the result for the propagator of the

composite field g can again be written as

LG (P)=¥ AF*) - B(F?),

where now

) = 1 ’ 4.5
and
N gy R (4.6)
2 )= p 4! . 4.6
When A2>>u2,m2,p2, the bound state propagator becomes

LG (p)=Z (- 2m). 4.7)

Thus the mass of the bound state is twice the mass of the
fermionic preon and independent of the mass of the scal ar
preon. Chiral symmetry of the Lagrangian is again realized
in the spectrun and in presence of explicit breaking (i.e.
m70) the bound state acquires mass directly proportional to

the magni tude of the symmetry breaking term.
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V. A MODDEL OF (UUARKS AND LEP TCNS

Since our model is a non—confining one, the preon y has
to be an olserved particle as well as the composite fermion
g. It is tempting to identify ¢ and g with 1leptons and
quarks . In this section we present a semi-realistic model
based on this idea. 1In order to incorporate the strong,
weak and electromagnetic interactions we have to use the
chiral symmetric Lagrangian (4.1), since the s.{mplest
Lagrangian (2.1) breaks gauge invariance. For simplicity we
discuss the model of one generation of leptons and guarks.

We assume the standard assignment for leptons, namely

(v
R
Y=V and eg , 1= 0, Y=0.4I=0, Y=-2.

The right handed neutrino, of oourse, does not couple to the
gauge bosons. The scalars appear in a oolor triplet 4, with

+
I=0 and ¥=2/3 and a color singlet H=(" ) with I=1/2 and v=1.
H
Ow model Lagrangian for these fields is

oklf = %_‘L ﬁ"}’;j’uﬁki JJVR-f "ég‘i.ﬁeg-\- CF(-DZ-— Pz)‘#'
-F{§ He + h.c.)
- T HE D PG ED B P et} (5D
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where
Df‘q’=(9)‘_ ide_W;f -i9 ’%YBF)"I’ '

with IOL:]'/ZTOL for I=1,/2 and zero for I=0, and

, « ., 1
D,,4>=(9,,-—1.9$—%—1,¢Ar—wg —2-—\(&,,)43.

o .
Au, Wli and Bu are the gauge fields of SU(3)C, SU(2)L and

U(1l) interactions.

As in the previous sections we add the following terms

to the Lagrandgi an:
R RS RCONCEE T
¢ N(age 2 4o )1 ) (Ui Fipeyd)

3
T Al 4w )P (dir T opnd),

where the superscript ¢ indicates the charge conjugate

wea () ).

R

fields, and

With that we obtain the linearized Lagrangian
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L= GADY + Vi Brig + Tt Peer $T(-D%p2)4

-f (W Heg+he)

+ N LB g (B e L6

~(qeh s 4T qp - Teend- pBeui-dved47L ).
(5.2)

cC
L

¢ _ %-{
qﬂ - "‘\T y(‘“ﬁ’f)’
Wi =~ %‘f—ﬂ(ezfm. (5.3)
di"%’iﬁ@a&)-

The reason why we have to use the charge conjugate fields is

Variations with respect to qg, u.~ and giwve

o

that, e.qg., U(¢L¢1-) is a right handed field with the weak
isospin 1/2, and cannot be assigned to either Qp, or dg.
Hence it is assigned to qi which has the same quantum
nunbers.

By eliminating the ¢ field we obtain the Lagrangian of
the standard model for aqiarks and leptons as an effectiwve
Lagrangian of ouwr oomposite model, Hjy. (5.1) . In the
framework of our model this essentially completes the
program which the realistic model for composite quarks and
leptons will eventually have to fulfill: starting from the
fundamental Lagrangian, obtain the mass spectrum of the
composite fermions and deriw the standard model as an

effective low-energy theory.
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The main purpose of this paper was to present a
sufficiently simple model in which this program can be
carried through explicitly. From the point of wview of
phenomenology, the main criticism of the model described
here is that it does not appear to offer a clue as to the
generation problem. One could, of <course, have preons
appearing in generations, but to our mind that goes against
the main philosophy of having composite quarks an leptons.
The contact interaction, By. (4.1}, is certainly too simple

to produce the generation structure dynamically.
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FIGIRE (AP TIMNS

The dominant ontribution to the =scal ar-fermion
bound state in the large N limit.
The electromagnetic wvertex of the composite

fermion.






